The Technique of MIEELDLD in Computational Aeroacoustics

نویسنده

  • A. R. Appadu
چکیده

The numerical simulation of aeroacoustic phenomena requires high-order accurate numerical schemes with low dispersion and low dissipation errors. A technique has recently been devised in a Computational Fluid Dynamics framework which enables optimal parameters to be chosen so as to better control the grade and balance of dispersion and dissipation in numerical schemes Appadu and Dauhoo, 2011; Appadu, 2012a; Appadu, 2012b; Appadu, 2012c . This technique has been baptised as the Minimized Integrated Exponential Error for Low Dispersion and Low Dissipation MIEELDLD and has successfully been applied to numerical schemes discretising the 1-D, 2-D, and 3-D advection equations. In this paper, we extend the technique of MIEELDLD to the field of computational aeroacoustics and have been able to construct high-ordermethodswith Low Dispersion and Low Dissipation properties which approximate the 1-D linear advection equation. Modifications to the spatial discretization schemes designed by Tam and Webb 1993 , Lockard et al. 1995 , Zingg et al. 1996 , Zhuang and Chen 2002 , and Bogey and Bailly 2004 have been obtained, and also a modification to the temporal scheme developed by Tam et al. 1993 has been obtained. These novel methods obtained using MIEELDLD have in general better dispersive properties as compared to the existing optimised methods.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A fourier pseudospectral method for some computational aeroacoustics problems

A Fourier pseudospectral time-domain method is applied to wave propagation problems pertinent to computational aeroacoustics. The original algorithm of the Fourier pseudospectral timedomain method works for periodical problems without the interaction with physical boundaries. In this paper we develop a slip wall boundary condition, combined with buffer zone technique to solve some non-periodica...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Applied Mathematics

دوره 2012  شماره 

صفحات  -

تاریخ انتشار 2012